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Reggeon Scattering in an External Field: 
A Solitonic Model 
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Solitonic solutions of the nonlinear Schrgdinger equation are considered to 
represent reggeons. The effect of a constant electric field on reggeons is formulated 
and the modified energy levels due to the interaction are calculated using the 
usual semiclassical approach. In summing overall stability angles a simpte 
subtraction procedure is adopted for regularization. 

1. INTRODUCTION 

Modern physics has so far developed primarily on the basis of the 
recognition of linear characteristics of natural phenomena. Various types 
of interactions have been treated by perturbative approaches. But this kind 
of decomposition of physical processes involves complications, and in fact 
the perturbative approach often has serious difficulties, such as divergent 
results in each order of perturbation and a lack of convergence of the 
perturbative series. In nature, the success of a linear theory is rather 
exceptional and in most cases the nonlinearity plays an essential role. From 
this point of view we identify the solitonic modes of the nonlinear Schr6din- 
get equation (NLSE) (Girardello and Jengo, 1977) with reggeons, against 
the perturbative approach. The colored modes of reggeons are discussed 
in Roy Chowdhury and Sidhanta (1986). 

The present work studies the effect of a constant electric field on the 
solitonic modes of reggeons. The semiclassical path integral formalism has 
already been applied by Dashen et al. (1975; also see deVega and Matllet, 
1982) and its utility as usefut tool is quite established. 

The major motivation of the paper is to find the effect of an electric 
field upon the energy levels, as in the Stark effect in atomic physics. The 
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renormalization problem is not dwelt upon in this discussion, since it has 
been thoroughly discussed elsewhere. But we find that the sum over all 
stability angles shows renormalizability by a simple subtraction procedure 
analogous to the BPHZ formalism. 

2. PRELUDE 

The nonlinear Schr6dinger equation can also be derived by the inverse 
scattering method. This method is different from that of Lax, but the results 
are equivalent. The method of Zakharov and Shabat (1973) is to consider 
a modification of the scattering problem, which starts with the coupled 
equations 

Olx : - - ipO 1 q- q(x,  t)O2 
(1) 

~'~2x = ipO= + y(x, t)01 

and the most general linear time dependence which is local 

Olt  : A O  1 + B02 

With the choice 

we have the NLSE 

02t = COl + DO2 

A = 2ip 2 -4- iqq* 

B = 2qp + iqx 

C = ~2q*p  • iq*x 

(2) 

(3) 

and 

A=( c~l+c~l c11c12+c2,c22~ (6) 
\C12C11-~-C22C21 C22"Jf-C22 ] 

cjk = L L / a j  - a~* 

A1 = (2rh) ue exp X1 

A2 = (2~72) 1/2 exp X2 

(7) 

where 

iqt = qxx + 2q2q * (4) 

For brevity we start with the two-soliton solution of the NLSE with vanishing 
asymptotic condition as given by 

~b (2) = ~  A*(1 -  A ) ~ I A  k * (5) 
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with 

XS = 2/(~ 2 - ~2)  t + 2 ~ x  - 4 ~ T j t  - ~Tjx (8) 

The one-sol i ton solution appears  to be 

th (') = ~. ~*~.1'/[ 1 - (~ .~ . I * /A~  - A * )  2] (9) 

Expand ing  in the ne ighborhood  of  the one-sol i ton solution, we calculate 
the fluctuation to be 

6 t b = - e l  A A I A ~ ( ~ C 2 2 ) B  t (10) 

when 

D = (1 - c~2)(1 - c~,) 

A = 2o'~rh exp 2x* - 4(oh Cll + cr2e22) exp(xl + x*) + 2  exp 2x2"(1 - e~l) 

B =  2 2 o1 + tr2 + 2~rlO'2 cn C12 

2 C u  = A IA 1/2*71 = - i exp(-8~: l rh  t - 2~%x) 

C22 = A2A*/2~72 = - i  exp(-8sc2~72t - 2~72x), putt ing 72 = e and ~2 = K 

Impos ing  a periodici ty condi t ion  in a box of  length L upon  the fluctuation, 
we have 

2 2 2 
2(~:1 - K~)L + tan -~ ~:1 - ~7~ + K~ - 2 ~ K n  = 2~-n (11) 

2r/1-- K , )  

where n = 0 ,  1, 2 , . . .  corresponds  to the per iodic  paths. The quant ized 
energy of  stability angles are defined to be 

E = 4(~ 2 -  r /~-  K ] )  (12) 

In the absence o f  an electric field the usual  Lagrangian is always written 
in the case o f  the (/)2 interact ion in the form 

i - O  
5 f = ~  O ~  qJ - a Vq7 V4, - Aof4` + g4`4`4`4` (13) 

and this yields the equat ion  o f  mot ion  in the form 

i 04,/0 t - a V24, - Ao4 , + g4`q74` = 0 (14) 

In order  to drop  the explicit occurrence o f  the masslike term, we use the 
shifted field 

4, = C~ e iA~ (15) 
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We consider the case of a pomeron where a = 1, and the soliton solution 
is taken in the form 

4 ~ls= n~ exp[-4i(~:~--O~)t-2i~lx]  sech(8~ln~t+2rhx)  (16) 

3. INTERACTION WITH THE ELECTRIC FIELD 

In the presence of a constant electric field the equation of motion is 
taken in the form 

i~t + ~xx = g@ +~btp -- eExtp (17) 

The solution of  the NLS equation in the absence of an electric field E is 
represented by (16) and the solution to (17) is related by the transformation 
equation as 

t~ ( t, x + eEt  2) = qb ( t, x )  e xp[  iE tx  + 2 (eE  )2t3] (18) 

Hence, the solution to equation (17) is given by 

{8~ '/2 
6(x, t) = ~ lkg  } exp[-4i(~:l 2 -  ~ ) t  - 2 i r  eEt2)] 

x sech[8~lr/1 t + 2r/l(X -- eEt2)] 

x exp i [ e E t ( x  - eE t  2) + ~ ( e E ) 2 t  3 ] (19) 

The fluctuation of the two-soliton solution about the one-soliton solution 
is calculated on the basic of expression (10), but for that we have to redefine 
certain functions as given by 

t~l = K] /2  e Y', ~2 = K] /2  e Y2 (20) 

where 

Y~ = 2 i ( r  rl2) t + ir x - eEt  2) - 4~irht - rli( x - eE t  2) 
(21) 

{8~ 1/2 
K1 = ~71kg J exp i [ e E t ( x - e E t 2 ) + ~ ( e E ) 2 t  3] 

The one-soliton solution in the presence of  a constant electric field is given 
by 

\ a i  -- OLl*/ 
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The fluctuation of the two-soliton solution is calculated by collecting the 
important terms at large distance: 

d& = K~ z exp( Y, + YI*) [ exp(2Yl+2Y*)  exp(2Y2+2 Y*)] 
L (sx,+i'r/1-K) 2 ~ (~I--/~-~---K~J (23) 

Thus 

where 

/ ~ \  
d&= "ql2~g)exp i [2eEt (x -eE t2 )+4(eE)2 t  3] 

x exp[ -  16~a rht - 4rh(x - eEt2)] 

[ e iu e-iU ] 
x k(~l + in, - K)  2 + (~:, - in, - K)Rj (24) 

where 

p~ = 2eEt( x - eEt 2) + 4( eE )2 t3 

P2 = -16~:1 ~/1 t - 4~71(x - eEt 2) 

Imposition of the periodicity condition in a box of length L yields a condition 
exactly the same as given by (11). 

The corresponding quantized energy levels are given by 

4 ( ~ -  n ~ -  K~) 
~. - ( 2 7 )  

1 - 2 ( ~ , - K . ) e E / w  

The expression shows the effect of an electric field upon the energy levels 
of  the reggeons. 

u [ 4 ( r  (1) eEe] = - t + 2(~ : , -K)x  (25) 

Equation (24) can be put into the form 

dqS= rl12(8) exp(ip,)exp(p2) 

x sin{[4(s~ ~ 2 2 eE, ]  - ~7 , -K ) + 2 ( K - ~ , )  t + Z ( ( , - K ) x  

+tan - '  ~:2_ r/R+K 2 _2s~lK - ~ (26) 
2~h ( ~ , - K . )  J 
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4. DISCUSSION 

The semiclassical path integral formalism is not always immune to the 
divergence problem, as pointed out by Dashen et al. (1975) and deVega 
and Matllet (1982) and others in the context of sine-Gordon field theory. 
Our experience is similar with the NLSE in the presence of an external 
electric field. We subtract the vacuum contribution and sum over the stability 
angles and define 

~-~o =-�89 ~+�89 ~o (28) 
This yields 

~[  4(~:~- ~7~- K~) 4 [ s c ~ - , 2 1 - ( 2 ~ r n / L )  2 ] 

~ -  ~:~ = -_~.~ 1 - ( ~ l - g , ) e E / w  y~ 1 - [ ~ l - ( 2 ~ r n / L ) 2 ] e E / ~ o  
(29) 

It is nontrivial to recast this into the form 

( ~ l - - ~ l - - K  ) . . I]6a K e_ o:_ [1fo {14 2 2 (30) 
- ( s e, - K ) e E / to J _] 

where 

6 = tan- '  ~ -  ~ +  K 2 .  2~,K (31) 
2n1(~ l - -  K )  

For large K we subtract (~'/~ra) tan-l(K/27/1) from equation (31). 
The redefined sum of stability angles yields 

~'a 20/~1 -- Ol2~? 12 -- 1 
( ~ -  (0)R = 2a2 4a2n~+ 1 + a2~12-2a~, (32) 

where a = e E / w  and a = 1 - a~. Hence the effective action can be written as 

ra 2a~l -- Ot2"O 2 -- 1 
Se~ = Sd-~ 2a2 4a2 2+ 1 + a2se2- 2aS~l (33) 

At this stage the limit E = 0 (i.e., the free field limit) should not be sought 
in (32); on the contrary, the limit E = 0 should be taken in the expression 
for the stability angle before considering the limit K --> oo and the regulariz- 
ation is performed. With this procedure the free field limit can always be 
reproduced. 
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